Fast Perceptron Decision Tree Learning from Evolving Data Streams
نویسندگان
چکیده
Mining of data streams must balance three evaluation dimensions: accuracy, time and memory. Excellent accuracy on data streams has been obtained with Naive Bayes Hoeffding Trees—Hoeffding Trees with naive Bayes models at the leaf nodes—albeit with increased runtime compared to standard Hoeffding Trees. In this paper, we show that runtime can be reduced by replacing naive Bayes with perceptron classifiers, while maintaining highly competitive accuracy. We also show that accuracy can be increased even further by combining majority vote, naive Bayes, and perceptrons. We evaluate four perceptron-based learning strategies and compare them against appropriate baselines: simple perceptrons, Perceptron Hoeffding Trees, hybrid Naive Bayes Perceptron Trees, and bagged versions thereof. We implement a perceptron that uses the sigmoid activation function instead of the threshold activation function and optimizes the squared error, with one perceptron per class value. We test our methods by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples.
منابع مشابه
Cost-Sensitive Perceptron Decision Trees for Imbalanced Drifting Data Streams
Mining streaming and drifting data is among the most popular contemporary applications of machine learning methods. Due to the potentially unbounded number of instances arriving rapidly, evolving concepts and limitations imposed on utilized computational resources, there is a need to develop efficient and adaptive algorithms that can handle such problems. These learning difficulties can be furt...
متن کاملAdaptive Parameter-free Learning from Evolving Data Streams
We propose and illustrate a method for developing algorithms that can adaptively learn from data streams that change over time. As an example, we take Hoeffding Tree, an incremental decision tree inducer for data streams, and use as a basis it to build two new methods that can deal with distribution and concept drift: a sliding window-based algorithm, Hoeffding Window Tree, and an adaptive meth...
متن کاملHandling Time Changing Data with Adaptive Very Fast Decision Rules
Data streams are usually characterized by changes in the underlying distribution generating data. Therefore algorithms designed to work with data streams should be able to detect changes and quickly adapt the decision model. Rules are one of the most interpretable and flexible models for data mining prediction tasks. In this paper we present the Adaptive Very Fast Decision Rules (AVFDR), an on-...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملIncrementally Optimized Decision Tree for Mining Imperfect Data Streams
The Very Fast Decision Tree (VFDT) is one of the most important classification algorithms for real-time data stream mining. However, imperfections in data streams, such as noise and imbalanced class distribution, do exist in real world applications and they jeopardize the performance of VFDT. Traditional sampling techniques and post-pruning may be impractical for a non-stopping data stream. To ...
متن کامل